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Abstract 

Natural convection in horizontal 

annular porous media has become a subject 

receiving increasing attention due to its 

practical importance in the problem of 

insulators, such as ducting system in high 

temperature gas-cooled reactors, heating 

systems, thermal energy storage systems, 

under ground cable systems, …., etc. This 

paper presents a numerical study for steady 

state thermal convection in a fully saturated 

porous media bounded by two horizontal 

concentric cylinders, the cylinders are 

impermeable to fluid motion and maintained 

at different, uniform temperatures. 

The solution scheme is based on 

two-dimensional model, which is governed 

by Darcy-Oberbeck-Boussinesq equations. 

The finite element method using Galerkin 

technique is developed and employed to 

solve for the present problem. 

A numerical simulation is carried out 

to examine the parametric effects of 

Rayleigh number and radius ratio on the role 

played by natural convection heat transfer in 

the porous annuli. The numerical results 

obtained from the present model were 

compared with the available published 

results and good agreement is observed. The 

average Nusselt number at the heating 

surface of the inner cylinder is correlated to 

Rayleigh number and radius ratio. 

   

1. Introduction 

Natural convection in horizontal 

porous annuli has a wide variety of practical 

applications such as the insulation of aircraft 

cabin or horizontal pipes, cryogenics, the 

storage of thermal energy, and the 

underground cable systems. Lui et al. [1] 

studied experimentally the natural 

convection in a horizontal annulus for a 

fluid layer and showed a multicellular 

regime for a relatively small radius ratio, 

(R=1.15). Later, Bishop and Carley [2] 

provided photographs showing oscillatory 

flow regime. Grigull and Hauf [3] used a 

Mach-Zehnder interferometer and visualized 

different convective regimes including one 

where three-dimensional effects were 

present in the upper part of the layer. Using 

purturbation method, Mack and Bishop [4] 

solved the steady two-dimensional equations 

and although the analysis is valid only for 

small Rayleigh numbers, the results revealed 

the existence of secondary flows in the 

upper and lower parts of the layer for very 

small Prandtle numbers.  

The analogous problem of the 

thermal convection in eccentric annulus 

containing viscous fluid (non-porous 

medium) has attracted some attention in 

recent literature. Kuehn and Goldstein [5] 

have conducted an experimental study, 

which included flow visualization and heat 

transfer measurements. Yao [6] developed a 

purturbation solution for slightly eccentric 

cylinders, using two-parameter expression in 

terms of eccentricity and Rayleigh number. 

For this purpose, Yao [6] used a special 

coordinates transformation in which the 

inner circle was transformed into pole. More 

recently, Prusa and Yao [7] constructed a 

finite difference method simulation using 

Yao’s [6] transformed coordinates. Projahn, 

et al. [8] and by Cho et al. [9] provided 

numerical simulations of viscous fluid in an 

eccentric annulus. The former applied non-

orthogonal body fitted curvilinear 

coordinates, while the later used bi-

cylindrical coordinate. The experimental 

work of Fant et al. [10] showed that at fairly 
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high Rayleigh numbers, thermal instability 

for air appears as steady counter rotating 

cells near the top of the annulus. Perhaps 

their most interesting result is that the same 

flow exhibits hysteresis behavior for small 

gap widths. As Prandtle number tends to 

zero, unsteady hydrodynamic instability was 

demonstrated at high Grashof numbers in 

the middle of the annulus. Cheddadi et al. 

[11] solved the same equations using the 

artificial compressibility method to obtain 

the pressure field. The tangential velocity 

component was measured using Laser 

Doppler anemometry in air-filled annular 

space. Experimental and numerical values 

agree well; hysteresis behavior was also 

reported. 

Few results for porous layer are 

present. Caltagirone [12] visualized the 

thermal field using the Christiansen effect 

and observed a fluctuating three-

dimensional regime in the upper part of the 

layer even though the lower part remained 

strictly two-dimensional. Both a 

perturbation method and finite difference 

technique were used to solve two-

dimensional Boussinesq equations. Burns 

and Tien [13] examined the variations of the 

overall heat transfer coefficients with the 

external heat transfer coefficient and radius 

ratio by steady-state two-dimensional 

analyses with the finite difference method 

and purturbation method. It was indicated 

that a maximum value of overall heat 

transfer coefficient existed depending upon 

the radius ratio. Using finite difference 

method, Echigo et al. (14) also obtained 

two-dimensional steady state numerical 

results taking into account the radiation 

effect. Bau [15], in recent works, took 

eccentricity into consideration and 

demonstrated that heat transfer in the 

annulus could be optimized by a proper 

choice of eccentricity.  

As mentioned above although 

several works have been done on the 

problem, most of them were restricted to 

one flow pattern, the unicellular one, except 

for the case of narrow annulus. However, 

the experimental measurements of 

Caltagirone [12] show, the flow pattern is 

unlike and not as simple as unicellular one 

and mainly because of this, the overall heat 

transfer rates predicted numerically disagree 

in a margin with those experimental data.  

Rao el al. [16] investigated steady 

and transient analyses of natural convection 

in horizontal porous annulus with Galerkin 

method. They obtained three families of 

convergent solutions appearing one after the 

other with increasing modified Rayleigh 

number corresponding to different initial 

conditions. Their predictions were limited to 

modified Rayleigh number up to 300.  They 

also determined numerically the bifurcation 

point, which coincide very well with that 

from the experimental observations of 

Caltagirone [12]. Mota and Saatdjian [17] 

solved two-dimensional Boussinesq 

equations using finite difference scheme 

with an ADI method and successive under 

relaxation to a very fine grid. They showed 

that for very small radius ratio and on 

increasing the Rayleigh number, the steady 

state regime changes from two to four to six 

to eight cells without exhibiting a hystresis 

loop. For radius ratio above 1.7 

approximately, closed hystersis loops 

between ranges containing 2 or 4 cells are 

obtained.  Mota and Saatdjian [18] used an 

accurate finite difference code to solve two-

dimensional Darcy-Boussinesq equations for 

eccentric, horizontal annulus filled with a 

saturated porous medium. They showed that 

reducing the radius ratio or increasing the 

eccentricity has the same impact on the 

geometry in the top part of the layer where 

the convective effects are more pronounced.      

 

2. Mathematical Formulation  

The problem considered here is a 

porous layer bounded between two 

horizontal concentric cylinders of radii Ri 

and Ro as shown in Fig. (1). The two 

cylinder walls are assumed to be 

impermeable. The surfaces of the two 

cylinders are assumed to be maintained at a 

constant temperatures Ti and To respectively 

with Ti To. The governing equations for 



steady natural convection with Boussinesq, 

Darcy flow are given as follows: 
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By taking the curl of Eq. (2) and using Eq. 

(4), we obtain the following equations: 
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Non-dimensionalizing the variables as 

defined below; 
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The governing equations reduce to the 

following: 
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where,  

Ra
*
 = Ra . Da 

Ra
*
 is the modified Rayleigh number and is 

given by:  /R)TK(Tg Ra ioi

*  

Ra; is Rayleigh number and given by: 

 /R)T(Tg Ra 3

ioi  

Da; is Darcy number and given by: 
2

iR/K Da   

Boundary Conditions 

The problem is assumed to be 

symmetric about the vertical axis, and as a 

result, only one half of the flow domain will 

be considered in this analysis. The boundary 

conditions are handled as follows:- 

a- Plane of symmetry: 

 0 
X

     , 0 = 
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b- Inner cylinder surface 

 1.0      , 0 =                 (10b)  

c- Outer cylinder surface 

      0      , 0 =                         (10c) 

Heat Transfer 

The local Nusselt number at the 

inner and outer cylinders surfaces can be 

calculated from the following equations 

respectively: 
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Where n: represent the direction normal to 

the cylinders surfaces. 

 The steady state average Nusselt 

number at the inner or outer cylinders 

surfaces are equals as given by: 
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3. Numerical Solution 

The solutions of Eqs. (8) and (9) 

subject to the boundary conditions specified 

by Eq. (10) is obtained numerically by using 

the Galerkin based finite element method 

[19, 20]. The objective of the finite element 

is to reduce the system of governing 

equations into a discretized set of algebric 

equations. The procedure begins with the 

division of the continuum region of interest 

into a number of simply shaped regions 

called elements. The grid used in the present 

calculation is illustrated in Fig. (1). The 

element type which used here is linear 

triangular element. The approximate 

expressions of temperature and stream 

function in an element are given by 



polynomials in terms of the nodal values and 

interploation functions. The interploation 

functions are derived from the assumption 

of linear variation of temperature and stream 

function through the element and are given 

by the following equation: 
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where; 

Nm is the usual interpolation function and is 

defined by:    

Nm= 
1
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 ( am + bm X + cmY)                 (14) 

Where; 

A is the element area and  
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The other components are given by 

cyclic permutation of the subscripts in the 

order 1,2 and 3. If the approximation given 

by Eq. (13) is substituted in the governing 

Eqs.(8-9), and the global errors are 

minimized using the above interpolation 

functions Nm as weighting functions, and 

after performing the weighted inegration 

over the domain G and the application of 

Green’s theorem, The present model can be 

written in the equivalent forms: 
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and  

 E =  total number of elements, 

G=  bounded domain,  

 =  domain boundary, 
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Equations (8) and (9) result in two sets of 

linear equations which have been solved by 

Gauss elemination method. The resulting 

two sets of  equations have been solved 

iteratively through a computer code written 

here in FORTRAN langauge. The iterative 

procedure was terminated when the 

following relative convergence criterion was 

satisfied: 
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where; i denote the iteration number 

performed. 

 

4. Model Validation 

First the code was validated by 

solving the convection problem of two 

concentric horizontal cylinders for which 

solutions are available. The obtained results 

compared with the available published data. 

Table 1 shows the average Nusselt Number 

for different previous researchers. A good 

agreement is found between the present 

work and the other researchers. 

 

5. Results and Discussions  

 A parametric study of five different 

radius ratios namely 1.2, 1.4, 1.6, 1.8 and 2 

is carried out. In figure 2, the variation of 

the average Nusselt Number (Nu) with the 

Rayleigh Number (Ra) for a radius ratio R 

of 1.2 is illustrated. It is noticed from this 

figure that, for a very small Ra the dominant 

mode is the pure conduction. As the Ra 

increases the Nu decreases until Ra reaches 



400. Above this value, as Ra increases the 

Nu increases too. Also, the figure shows a 

break point at Ra about 800, which may 

indicate different flow characteristics, as 

stated by [16-17].   

The variation of Nu with Ra for 

R=1.4 is illustrated in Fig. 3. A slight 

decrease of Nu is noticed at very low 

Ra<100, then as Ra increases the Nu 

increases, also a break point at about 

Ra=140 is noticed. The variation of the Nu 

with Ra for R=1.8 is depicted in Fig. 4. It is 

noticed from the figure that as Ra increases 

the Nu increases. Also, two breaking points 

are noticed at Ra=200 and 400 respectively. 

This may be due to change in flow 

characteristics at these conditions. Figure 5 

illustrates the variation of Nu with Ra for 

R=2. The variation of Nu with R for 

different Ra is shown in Fig. 6.  It can be 

concluded that for small Ra (i.e. Ra=10 or 

less), where the conduction is the dominant 

mode of heat transfer, the increase of the 

insulation thickness (R) leads to decrease of 

Nu (i.e the decrease of heat loss). As Ra 

increases (where the natural convection 

becomes the dominant mode)   the useful 

insulation radius ratio (R) becomes smaller. 

The heat transfer and flow characteristics in 

the porous layer for R=2 and 1.6 for Ra=120 

are illustrated in Figs. 7 and 8 respectively. 

The natural convection is dominant in the 

top portion of the figure while the 

conduction is dominant at the bottom. 

The heat transfer and flow 

characteristics in the porous layer for R=1.2 

and Ra=120 are illustrated in Fig. 9. Due to 

the small thickness of the porous layer, the 

conduction mode is dominant mode of heat 

transfer in the whole layer. 

Figure 10 shows the comparison 

between the predicted and correlated 

average Nusselt number. 

 

6. Conclusions 

The numerical solution of natural 

convection in a porous medium bounded by 

two horizontal isothermal cylinders is 

obtained. The solution of two different 

radius ratios namely 1.2 and 2.0 are 

presented. Also, the present code is 

validated through the comparison of its 

results with those available in the literature.  

For a small insulation thickness, the 

dominant heat transfer mode is the 

conduction regardless of Ra. The useful 

maximum insulation thickness decrease as 

Ra increases.  

From the data obtained, the average 

Nusselt number is correlated with Rayleigh 

number and radius ratio as:- 

Nu = 1.82 Ra
0.2018

 . R
-1.4713

 

 

 with 6.7 % sum of square errors. 
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Nomenclature 

 

c        Specific heat of fluid at constant pressure 

Da      Darcy number; 2

iR/K Da   

g        Gravity acceleration  

G       Bounded domain  

h        Heat transfer coefficient       

ke       Effective thermal conductivity of the porous medium  

K       Permeability 

Nu     Nusselt number 

n        Normal direction 

R       Radius ratio, Ro/Ri 

Ri      Inner cylinder radius 

Ro      Outer cylinder radius 

Ra     Rayleigh number;   Ra =  /R)T(Tg ioi  

Ra
*
    Modified Rayleigh number; Ra

*
 =  /R)TK(Tg 3

ioi  

T       Temperature 

u       Velocity component in x – direction  

v       Velocity component in y – direction  

x,y    Cartesian coordinates  

X,Y  Dimensionless Cartesian coordinates 

 

Greeks 

        Thermal diffusivity of the porous medium 

        Thermal expansion coefficient of the fluid 

         Circumferential angle 

        Domain boundary 

        Dimensionless temperature; (T-To)/(Ti-To) 

        Dynamic viscosity 

        Density of fluid 

        Kinematic  viscosity 

       Stream function 

       Dimensionless stream function; / 

 

Subscripts 

e        effective 

f         fluid 

i.        inner 

o        outer  

r         reference 

x,y     Cartesian components 

 

Superscripts 

e        element level 

i         iteration number 

T        transpose  

        average 

 



 

 Caltagirone 

[12] 

Rao et al 

[16] 

Bau 

[21] 

Facas 

[22] 

Facas & 

Farouk 

[23] 

Present 

Code 

Grid size 49x49 10x10 30x44 50x50 25x25  10x18 

Ra=50 1.328 1.341 1.335 1.342 1.362 1.317 

Ra=100 1.829 1.861 1.844 1.835 1.902 1.865 

 

 
Table 1: Comparison of the average Nusselt number for natural convection for convective flow between 

two concentric cylinders with radius ratio of 2. 

 

 

 

 

 

 
 

Figure 1 Physical geometry and sample grid of the present problem 
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Figure 2 Variation of Nu  and Ra for R=1.2      Figure 3 Variation of Nu  and Ra for R=1.4 
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Figure 4 Variation of Nu  and Ra for R=1.8      Figure 5 Variation of Nu  and Ra for R=2 
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Figure 6 Variation of Nu  with the Radius Ratios for different Ra 

 



 

 

 

       
 

Figure 7 Temperature filled and stream function contours for R = 2 and Ra =120 
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Figure 8 Temperature filled and stream function contours for R = 1.6 and Ra =120 
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Figure 9 Temperature filled and stream function contours for R = 1.2 and Ra =120 
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Figure 10 Comparison between the predicted average Nu and the correlated Nu. 


